

Practice: The gold medal winning times for the men's 100-meter dash
are listed below for the last 20 Summer Olympic Games.Questions

a. The data were graphed and a line fit "by eye" passed through the points (1972, 10.15) and (2004, 9.8). Find the equation of this linear model to relate the year and the winning time.

b.	Interpret the slope of your line in the
	context of the problem.

- c. Use the model to predict the winning times for 2012 (London) and 2016 (Rio de Janeiro). Then research and compare your results.
- d. Usain Bolt of Jamaica won the 100-m dash at the Beijing 2008 Olympic games in a record of 9.69 seconds. Based on the linear model, when "should" that occur?

City	Veer	Winning	
City	rear	Time(s)	
Beijing	2008	9.69	
Athens	2004	9.85	
Sydney	2000	9.87	
Atlanta	1996	9.84	
Barcelona	1992	9.96	
Seoul	1988	9.92	
Los Angeles	1984	9.99	
Moscow	1980	10.25	
Montreal	1976	10.06	
Munich	1972	10.14	
Mexico City	1968	9.95	
Tokyo	1964	10.0	
Rome	1960	10.2	
Melbourne	1956	10.5	
Helsinki	1952	10.4	
London	1948	10.3	
Berlin	1936	10.3	
Los Angeles	1932	10.3	
Amsterdam	1928	10.8	
Paris	1924	10.6	

Measuring How Well a Lines Models Data

The *average* of a set of data helps us to see what the data tends to do. In other words, what kinds of numbers we expect. Similarly, a linear model gives us an expectation of value and can see how well the observed data compares to the *expected data* by calculating the ______(by ______), then ______), then ______.

	Diamo	nd Ring Prices by Weig	sht of Diamon	d
Weight	ight Price Predicted (\$) $(y=2400x+400)$ Residuals		Residuals	Square of Residual
0.15	484.50			
0.16	507.00			
0.18	702.00			
0.25	963.00			
0.27	1080.00			
0.33	1417.50			
0.23	829.50			
			Sum of	
			Squares of	
			Residuals:	
Definition of Sum of Square Residuals				

Sum of squared residuals =
$$\sum_{i=1}^{n} (\text{observed } y_i - \text{ predicted } y_i)^2$$

The second line is a better model of the data because it has a smaller total area of the squares. The total area is the **sum of squared residuals**.

Country	TVs per 100	Unemployed per 100	Predicted $y = -0.3x + 17$	Residual	Square of Residual
Argentina	22.3	7.8			
Bulgaria	40	6.3			
India	6.5	6.8			
Israel	29.9	6.1			
Netherlands	51.8	4.5			
New Zealand	52.3	4.0			
Ploan	33.7	9.7			
South Africa	12.3	21.7			
South Korea	34.7	3.2			
			Sum of Squares of Residuals:		

Now, compare with a different model: $y = -0.167x + 13$					
Country	TVs per 100	Unemployed per 100	Predicted $y = -0.167x + 13$	Residual	Square of Residual
Argentina	22.3	7.8			
Bulgaria	40	6.3			
India	6.5	6.8			
Israel	29.9	6.1			
Netherlands	51.8	4.5			
New Zealand	52.3	4.0			
Ploan	33.7	9.7			
South Africa	12.3	21.7			
South Korea	34.7	3.2			
			Sum of Squares of Residuals:		

Make a scatterplot of the data and enter the two models in Y1 and Y2 of your calculator.

Which of the two models better describes the data? Explain.